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Tapered Stripline Embedded in Inhomogeneous
Media as Microwave Matching Line
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Abstract—A novel design method for a stripline microwave
matching line is developed in this paper. Striplines considered
have a tapered inner conductor embedded in an inhomogeneous
dielectric material with continuous spatial variation of the relative
permittivity. The employment of this kind of waveguide, as it is
shown in this paper, ensures good matching properties in a wide
frequency range. These matching properties can be controlled
by means of two different factors: the taper of the stripline inner
conductor and the relative permittivity spatial variation of the
dielectric material filling the stripline. Starting from the nonuni-
form transmission-line theory, a novel closed analytical form for
the input reflection coefficient of such lines is derived, and design
formulas for the matching line are carried out. Finally, several
applications that show the capability, flexibility, and fastness of
the developed synthesis method are presented.

Index Terms—Design formulas, matching line, stripline.

I. INTRODUCTION

I N MONOLITHIC-MICROWAVE integrated-circuit
(MMIC) technology, microstrips and striplines are widely

used because of several of their properties: large bandwidth,
excellent miniaturization, small volume, small weight, etc.
Moreover, the very easy passive circuits realization and the very
good integration with chip devices make them very popular in
microwave printed-circuit technology.

The stripline consists of an inner conductor embedded in a
dielectric material that is sandwiched between two conducting
planes. In the balanced form, the stripline has the inner con-
ductor in the middle between the two ground planes (Fig. 1).

Since the principle mode of operation for such a waveguide is
the , it allows the field inside the stripline to be studied
in a very fast and easy way. In fact, the TEM mode has a null
cutoff frequency and, therefore, it can be studied as a static field.

Striplines have been widely studied starting from the end of
the 1940s and the beginning of the 1950s [1]–[3]. In these early
studies, the main tasks were the calculus of the characteristic
impedance of the line and the derivation of a static capacitance
model to completely represent the field in every transverse sec-
tion of the lossless balanced stripline. This model takes into ac-
count both the reactive effect of the capacitance between the
inner conductor and the two metallic shields and the fringing ef-
fect of the field at the boundary of the inner conductor. In Fig. 2,
the capacitance model for the generic transverse section of the
stripline is depicted as shown in [4].

Manuscript received December 17, 1999.
The authors are with the Department of Electronic Engineering, Uni-

versity of “Roma Tre,” 00146 Rome, Italy (e-mail: vegni@uniroma3.it;
bilotti@uniroma3.it; toscano@ieee.org).

Publisher Item Identifier S 0018-9480(01)03313-0.

Fig. 1. Balanced stripline geometry.

Fig. 2. Stripline capacitance model.C is the parallel-plate capacitance and
C is the fringing capacitance.

Fig. 3. Stripline taper.

In matching purposes, a wide frequency range in which
reflections are very low (i.e., under a certain threshold) is often
required. In order to achieve this goal, tapered lines can be
successfully used [5]. Thus, if it has to match each other two
uniform striplines with different characteristic impedances and
a wide-band matching is required, a stripline with a tapered
inner conductor (Fig. 3) can be used. Section by section the
width of the inner conductor varies and, thus, the characteristic
impedance of the line also varies in such a way that, at the
two ends, it has the same values of the two uniform lines to be
matched.

Recently, a new kind of matching method has been carried out
by using inhomogeneous dielectric media [6], [7]. The dielectric
material used has a continuous spatial variation of the relative
permittivity and it also allows to perform a good matching on a
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large range of frequencies. These kind of materials can be ob-
tained via nonuniform metallic inclusions with different shapes
and dimensions in a host dielectric. Otherwise, typical exam-
ples of such materials are those used for optical waveguides and
fibers with a spatial variation of the refractive index or semicon-
ductor with a continuous doping profile.

However, the idea proposed in this paper is to merge the taper
method and the use of inhomogeneous substrates in order to de-
sign very general matching lines with high performances and
with multiple control capabilities. The striplines used have an
inner conductor tapered along the-axis and the substrate with
an arbitrary continuous permittivity profile along the same di-
rection.

The introduced component is such that its matching proper-
ties can be controlled in two different ways: by using the taper
of the inner conductor and/or by using the permittivity profile of
the dielectric substrate. The aim of this paper is to find a model
that yields to simple, accurate, and practical design formulas for
these striplines used in microwave matching purposes.

II. THEORY

A. Parameters of the Stripline

Let us consider the stripline capacitance model depicted in
Fig. 2. The parallel-plate capacitance per unit length (in the ab-
sence of fringing) is given by

(1)

On the other hand, the fringing capacitance per unit length has
been exactly computed by conformal mapping [8, p. 104, eq. 35]
as follows:

(2)

Referring to the capacitance model depicted in Fig. 2, the total
capacitance per unit length of the stripline is given by

Two of the most important parameters of any transmission line
are its characteristic impedance () and phase factor (). As-
suming the TEM-mode propagation, these two parameters can
be written as follows:

(3)

(4)

Fig. 4. Characteristic impedance relative error made using (6) instead of the
exact formula [1], [10].

It is well known [1], [10] that if the thickness of the inner
conductor can be neglected, so that , in such a way
that it can be imposed, , a closed analytical form for the
characteristic impedance, based on conformal mapping, can be
derived. This exact solution involves a ratio of two complete el-
liptic integrals of the first kind and it is very simple, practical,
and accurate. However, if the width () of the inner conductor
is greater than , it will be demonstrated in the following
that an approximated formula can be easily carried out for the
characteristic impedance so that the relative error on the deter-
mination of the characteristic impedance is less than 5%.

By assuming in (1) and in (2), the total capacitance per
unit length is approximated by

(5)

The characteristic impedance of the stripline in such a case is
given by

(6)

where the subscriptdenotes that this is an approximated form.
In Fig. 4, the relative error obtained using (6) instead of the
exact formula is depicted as a function of the inner conductor
normalized width ( ).

As can be seen, the relative error on the characteristic
impedance decreases as the inner conductor normalized width
increases. Moreover, the approximated formula (6) leads to
an error less than 5% if the normalized inner conductor width
( ) is greater than 0.175. This makes (6) commonly used in
analysis and synthesis practical problems regarding striplines.

In this paper, we use (6) and (4) for the characteristic
impedance and the phase factor, respectively. These two for-
mulas are effective section by section along the-direction and
describe the propagation of the mode in an uniform
stripline.

If we want to study nonuniform striplines that have an inner
conductor tapered along the-axis, it can be shown that (6) and
(4) are still effective [9]. This result comes from the fact that
we can write them on each transverse section of the stripline.
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Fig. 5. Typical matching purpose.

For such a transmission line, we have, section by section, the
same phase factor (), but a different characteristic impedance.
In fact, if the dielectric material that fills the stripline is homo-
geneous, (6) and (4) become

(7)

(8)

Moreover, if the inner conductor has an uniform width and
the dielectric material is inhomogeneous with a continuous vari-
ation of the relative permittivity along the-axis, (6) and (4) are
also still effective section by section. In this case, we have either
a variation of the characteristic impedance and a variation of the
phase factor along the-direction.

Finally, if we use a nonuniform stripline filled by an inho-
mogeneous dielectric material, the characteristic impedance and
phase factor can be written as follows:

(9)

(10)

B. Matching Lines

Let us consider now the use of a tapered stripline filled by an
inhomogeneous material as a matching line. A typical matching
purpose is depicted in Fig. 5.

It has to match two striplines with different character-
istic impedance ( and , respectively). Let us suppose,
as a general case, that these two lines have different inner
conductor widths and that they are embedded in different
dielectric materials (it is clear that the cases in which
or are sub-cases).

A tapered stripline with its inner conductor embedded in a
dielectric material whose relative permittivity varies along the

-direction is employed to solve this kind of matching problem.
The choice of this tapered inhomogeneous matching line de-
pends on the fact that a good matching can be performed for a
very large frequency range [5].

This is not the only possible choice to make up a matching
line. For instance, a classical transformer can be used, but

Fig. 6. Magnitude of the input reflection coefficient as a function of frequency
(in gigahertz) by using a cascade ofN�=4 transformers. (The two uniform
striplines to be matched have� = 75
 and� = 50
, respectively. The
free-space fundamental frequency isf = 1 GHz.)

Fig. 7. Magnitude of the input reflection coefficient as a function of
frequency (in gigahertz) by using a cascade ofN = 5 �=4, maximally flat
and Chebyshev transformers, (The two uniform striplines to be matched
have� = 75
 and� = 50
, respectively. The free-space fundamental
frequency isf = 1 GHz.)

the results are very poor. We have a good matching, in fact,
only for narrow frequency bands centered around the odd mul-
tiple of the fundamental frequency (i.e., the frequency for which
the transformer is designed). As can be seen from Fig. 6, the
matching frequency band can be improved by using a cascade
of transformers.

It is well known that a better bandwidth can be achieved by
using maximally flat or Chebyshev transformers, as shown in
Fig. 7.

However, these matching lines, based on a cascade of uniform
transformers, have several disadvantages. The abrupt transition
regions between adjacent sections, in fact, exhibits reactive dis-
continuities, which introduce reflections and, thus, degrade the
matching performance at the higher microwave frequencies. On
the other hand, the length of the matching line increases with the
number of the used transformers and, finally, if wider matching
bandwidths are needed, it has to find a way to knock down the
peaks of the reflection-coefficient magnitude for the even mul-
tiples of the fundamental frequency.
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C. Reflection Coefficient

If we want to perform the matching by using a tapered
stripline with the inner conductor embedded in an inhomo-
geneous material, we have to compute the input reflection
coefficient for a nonuniform transmission line. It is well known
that the reflection coefficient for this kind of lossless line
satisfies the following nonlinear Riccati equation [11]:

(11)

In matching purposes, section by section, the reflection coef-
ficient along the nonuniform line is very small so that it can be
imposed, i.e., : . In [12], it is shown that via this as-
sumption, the Riccati equation becomes an ordinary linear equa-
tion and that, once it is solved, the input reflection coefficient for
an -long nonuniform transmission line is

(12)
In the general case, if the functional profiles of the charac-

teristic impedance and phase factor are arbitrary, (12) does not
yield a closed form because it involves two numerical integra-
tions.

Therefore, even if (12) can be successfully used in a matching
line analysis purpose, it is not suitable for design purposes. In
this kind of problems, in fact, once the parameters of the two
striplines to be matched are given, the lengthof the matching
line, the taper of the inner conductor, and the relative per-
mittivity profile have to be computed. In the general case,
(12) does not yield a closed analytical form, thus, we cannot
straightforwardly derive the design parameters among which,
for instance, the length of the matching line.

In the Section II-D, the generalized nonuniform transmis-
sion-line theory is exposed via which a closed analytical form
for the reflection coefficient is carried out (Section II-E).

D. Generalized Nonuniform Transmission-Line Theory

The coupled linear equations for a nonuniform transmission
line can be written as follows:

(13)

where and are the impedance
and admittance of the line, respectively. In the general case,
and are arbitrary functions. and are, instead, con-
stants that are imaginary for a lossless line.

The second-order differential voltage equation is

(14)
Although this equation does not have a closed analytical solu-
tion in the general case, for several specific impedance and ad-
mittance profiles, a closed form can be found out (i.e., exponen-

tial line, linearly tapered line, hypergeometric line, hyperbolic
line, etc.).

In [13] and [14], a generalization of the nonuniform trans-
mission line, whose solution can be expressed in a closed an-
alytical form, has been proposed. Via the variable substitution

, where is an arbitrary, derivable, and not null
derivative function, (14) becomes

(15)

This equation is the second-order differential voltage equa-
tion for ageneralizednonuniform transmission line.

To clarify the concept of generalization, let us consider as
an example an exponential transmission line. Impedance and
admittance profiles are of the form

(16)

where is the taper factor of the line. Inserting these profiles
into (14), it becomes

(17)

The solution of this equation is given by

(18)

Let us now consider an arbitrary function . If the
impedance and admittance profiles of a nonuniform transmis-
sion line are of the following form:

(19)

(15) becomes the same kind as (17) and its solution is

(20)

Equation (19) defines thegeneralizedexponential line (it is
clear, in fact, that if (19) and (20) become (16) and
(18), respectively).

E. Closed Form for the Reflection Coefficient

Although the generalization of the nonuniform transmis-
sion-line theory can be applied to all the lines for which a
closed-form voltage solution can be derived, here we only
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consider the generalized exponential one. Using this kind of
line, a very simple closed analytical form for the reflection
coefficient can be carried out.

In the lossless case, the characteristic impedance and phase
factor for such a line are

(21)

where and .
Let us now consider the matching problem depicted in Fig. 5.

Inserting (21) in (12), the following closed analytical form for
the input reflection coefficient is obtained:

(22)

where

and and are the characteristic impedances of the two uni-
form lines to be matched.

This analytical closed form for the reflection coefficient
can be successfully used both in analysis and synthesis
matching-line purposes. In [7], it is shown that analysis prob-
lems using (22) instead of (12) lead to a strongly decrease
of computation time because the two numerical integrations
disappear. Synthesis examples are also proposed in [7] and
they show how design formulas for the matching line can be
directly derived.

F. Synthesis of the Matching Line

Referring to the Fig. 5 and to the formula (22), we have to find
the unknown function and the relationship between the
relative permittivity profile and the taper of the inner conductor
such that the closed form for the reflection coefficient can be
successfully used. So, by comparing the second of (21) with
(10), the arbitrary function can be expressed in term of the
relative permittivity profile of the dielectric material

(23)

On the other hand, by comparing the first of (21) with (9),
the relationship between the permittivity profile and con-
ductor taper can be derived as follows:

(24)

where is an integration constant.
In design problems of the kind shown in Fig. 5, the typical

input parameters (i.e., known parameters) are the geometrical
and electromagnetic characteristics of the two striplines to be

matched, i.e., , , , and . Another important input pa-
rameter is the lower frequency () for which a good matching
has to be performed.

Instead, the output parameter of the matching line are the
length of the nonuniform stripline, the dielectric material per-
mittivity profile , and the inner conductor taper profile

.
Let us now consider that the dielectric material is not a disper-

sive material. The overall equations we can write are as follows:

(25)

where is a positive integer starting from one. Some expla-
nations about these equations have to be given. The first four
are derived from the boundary conditions at the ends of the
matching line and it has to be remarked that, by means of (24),
they are not all independent. Thus, only three of them can be
used in the design of the matching line. Instead, the last equa-
tion is obtained by imposing that the sinc argument in (22) is
an integer multiple of at the frequency where the choice of

depends on the required quality of the matching we have to
perform. The explanation of this statement is in the following.
It is well known that the voltage standing-wave ratio (VSWR)
is related to the magnitude of the reflection coefficient via

thus, once is given, the maximum allowed magni-
tude for the reflection coefficient is

(26)

This value has to be compared with the magnitude of
and, starting from , has to be less than it. Since
exhibits a behavior, has to be compared with the
amplitude of the sidelobes. Therefore, the right-hand-side
value of can be derived as the smallest positive integer that
satisfies the following inequality:

(27)

Thus, the integer is associated with theth sidelobe of the
and, if is greater than the amplitude of this sidelobe, it
is also greater than all the following ones. In addition, since we
are sure that (27) also holds at theth zero position, in order
to extend the good matching frequency range, we can calculate
the proper length of the matching line from the fifth equation of
(25).

Once the proper value ofhas been determined, the designer
can arbitrarily choose either the kind of function describing
the taper of the inner conductor or the permittivity profile
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Fig. 8. Design method.

of the dielectric material. The associate permittivity profile
or taper profile is then given by (24). In order to satisfy the
two boundary conditions at the ends of the matching line,
both and are chosen with two freedom degrees
(an amplitude and a shift coefficient):
and . Thus, if the designer arbitrarily
chooses [and derives via (24)], he has to determine
the length of the matching line, , , and the integration
constant in (24), but, if he arbitrarily chooses [and
derives via (24)], he has to determine, , , and .

The design method developed in this section for the matching
line is discussed further in Fig. 8.

III. N UMERICAL RESULTS

In this section, we show several applications of the design
method presented above. First of all, let us consider a matching
problem between two uniform, lossless, matched, and balanced
striplines (referred to as striplines 1 and 3) with different nor-
malized widths of the inner conductor and with different dielec-
tric materials. Stripline 1 has an inner conductor, whose nor-
malized width is , and a dielectric material with rel-
ative permittivity (RT/Duroid). The other stripline
(stripline 3) is instead characterized by the following parame-
ters: and (beryllium oxide). The max-
imum allowed VSWR is and the matching has to be effective
starting from the frequency GHz.

Now that the six design specifications (i.e., input parameters)
are given, the designer can arbitrarily choose either the law of
relative permittivity spatial variation along the-axis, provided
that the taper profile is given through (24), or the taper pro-
file, provided that the variation of relative permittivity is again
obtained via (24). Let us choose, for instance, a squared spa-
tial variation for the relative permittivity along the-axis, i.e.,

. The inequality (27) is satisfied for
and the solution of the system (25) gives the following output
parameters: cm, , , and

.
The output parameters computed via the application of the

novel method developed in the previous section allow the de-
signer to construct the proper matching line. In Fig. 9, the overall
normalized width of the matching line inner conductor as a func-
tion of is depicted.

Fig. 9. Normalized inner conductor width as a function ofx. The input
parameters arew =b = 0:4, w =b = 1:2, � = 2:33, � = 6:80,
f = 3 GHz, andVSWR = 1:5.

Fig. 10. Relative permittivity of the matching line as a function ofx. The input
parameters arew =b = 0:4, w =b = 1:2, � = 2:33, � = 6:80, f =

3 GHz, andVSWR = 1:5.

Instead, in Fig. 10, the spatial variation of the dielectric rela-
tive permittivity along the -axis is shown.

Moreover, the numerical result obtained for the length of the
matching line show that the use of tapered striplines with in-
homogeneous substrates instead of a cascade of uniform trans-
formers (i.e., , maximally flat or Chebyshev) allows the con-
struction of a shorter matching line. This yields several impor-
tant advantages in order to make these components very com-
pact.

Finally, in Fig. 11, the behavior of the VSWR at the input sec-
tion of the matching line is reported as a function of frequency.

It is worth noticing that the design specification about the
can be well satisfied by means of the high-pass

frequency behavior of such a matching line because we con-
sider a non-frequency-dispersive dielectric material. In a fre-
quency-dispersive case, in fact, we should have a frequency be-
havior different from a profile for the magnitude of the
reflection coefficient and, thus, a different plot for the VSWR
at the input section of the matching line. However, it is clear
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Fig. 11. VSWR at the input section of the matching line as a function of
frequency. The input parameters arew =b = 0:4, w =b = 1:2, � = 2:33,
� = 6:80, f = 3 GHz, andVSWR = 1:5.

that the input reflection coefficient closed form (22) is also ef-
fective if we have to consider the frequency dispersion of the
dielectric material and, thus, also the relative permittivity as a
function of frequency. In fact, if , (23) becomes

and, in (22), and become
and . No other changes are needed. This means

that the argument of the in (22) is no longer a linear func-
tion of the frequency and, thus, the last equation of the system
(25) is no longer effective. The needed changes to this equation
will be the subject of future study.

Referring to Fig. 11, it can be seen that, although a perfect
matching (i.e., ) is achieved for only specific fre-
quency values, starting from , the specification is
fully satisfied. The theory of nonuniform transmission lines en-
sures that a complete matching for all the frequency band can
be performed only if the matching line has an infinite length.
Thus, the closer is to one, the bigger the length of the
matching line. For instance, referring to the previous matching
case, if the drops down from 1.5 to 1.1, the length
of the line arises from 2.418 to 9.671 cm.

In the following, it is shown that the synthesis method for the
matching line developed in the previous section is also effective
in physical situations less general than that shown in the first
numerical example. Let us consider here two uniform lossless
matched balanced striplines (striplines 1 and 3, respectively),
which have the same normalized width of the inner conductor

. Stripline 1 is filled with air ( ),
stripline 3 with alumina ( ), the maximum for the
VSWR is and the lower matching frequency
is GHz. The most straightforward way to design a
matching line in this case is to choose a stripline with an uni-
form inner conductor ( ) and with a dielectric ma-
terial whose relative permittivity continuously varies from 1 to
10.2. Assuming a constant normalized width for the inner
conductor of the matching line, (24) can be solved for the per-
mittivity profile of the dielectric material and a parabolic law
of the kind can be discovered. In this
case (27), inequality is satisfied for ; the length of the
matching line is cm, the integration constant in

Fig. 12. Relative permittivity of the matching line as a function ofx. The input
parameters are:w =b = 0:5,w =b = 0:5, � = 1, � = 10:2,f = 5GHz,
andVSWR = 1:15.

Fig. 13. VSWR at the input section of the matching line as a function of
frequency. The input parameters are:w =b = 0:5, w =b = 0:5, � = 1,
� = 10:2, f = 5 GHz, andVSWR = 1:15.

(24) is , and the two permittivity parameters are
and .

In Fig. 12, the relative permittivity profile of the dielectric
material filling the matching line is shown as a function of.

In Fig. 13, the plot of the VSWR at the input section of
the matching line is reported. As can be seen, also in this
case, the given matching specification ( ) is
fully satisfied.

The last numerical example that is proposed regards another
special case of the general theory developed in the previous sec-
tion. Let us consider two uniform lossless matched, balanced
striplines, i.e., striplines 1 and 3. They have the same substrate
(RT/Duroid, ), but different normalized widths
of the inner conductor ( and ). The
maximum VSWR allowed on the input section of the matching
line is and the lower matching frequency is

GHz. In this case, we have to design a matching line with
the same dielectric material of the other two ( ) and
with an inner conductor whose normalized width varies from

to . Assuming a constant value for
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Fig. 14. Normalized inner conductor width as a function ofx. The input
parameters are:w =b = 0:5, w =b = 2:2, � = 2:33, � = 2:33,
f = 7 GHz, andVSWR = 1:2.

Fig. 15. VSWR at the input section of the matching line as a function of
frequency. The input parameters are:w =b = 0:5, w =b = 2:2, � = 2:33,
� = 2:33, f = 7 GHz, andVSWR = 1:2.

in (24), the taper of the inner conductor has an exponential law
. Inequality (27) gives and, via

the solution of the system (25), the following parameters are
obtained: cm, , , and

. In Fig. 14, the overall normalized width of the
central conductor as a function of the distance along the-axis
is reported.

In Fig. 15, the VSWR on the input section of the matching line
as a function of frequency is depicted. As can be seen, starting
from GHz, the matching fully satisfies the design spec-
ifications.

IV. CONCLUSIONS

In this paper, a new type of wide-band matching line has
been proposed. This matching line consists of a stripline with
a tapered inner conductor embedded in an inhomogeneous di-

electric material whose relative permittivity varies continuously
along the energy propagation direction.

Using the nonuniform transmission-line theory, a closed an-
alytical form for the input reflection coefficient of the matching
line has been carried out. On the base of this formula, a com-
plete, accurate, and very fast design method for this kind of
matching line has been developed.

Finally, several numerical results have been presented to
show how the novel design method can be successfully used in
practical situations. First, the very general matching problem in
which it has to match two other striplines with different inner
conductor widths and different dielectric substrates has been
considered and solved via the novel method developed here.
The particular matching problems in which the two striplines
to be matched then have different inner conductor widths, but
the same dielectric substrate, and vice versa, have been solved
as sub-cases.

The main attractive of the novel method developed in this
paper is in the capability of deriving in a straightforward manner
the length of the matching line, relative permittivity profile, and
taper of the inner conductor. The main physical result of the
new kind of matching line proposed instead is the capability
of obtaining a good matching on a wide frequency range by
means of two control keys: the conductor taper and dielectric
inhomogeneity.
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