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Tapered Stripline Embedded in Inhomogeneous
Media as Microwave Matching Line
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Abstract—A novel design method for a stripline microwave
matching line is developed in this paper. Striplines considered h
have a tapered inner conductor embedded in an inhomogeneous
dielectric material with continuous spatial variation of the relative

permittivity. The employment of this kind of waveguide, as it is b _i t .
shown in this paper, ensures good matching properties in a wide T w T
frequency range. These matching properties can be controlled h

by means of two different factors: the taper of the stripline inner V/

conductor and the relative permittivity spatial variation of the
dielectric material filling the stripline. Starting from the nonuni-
form transmission-line theory, a novel closed analytical form for
the input reflection coefficient of such lines is derived, and design

formulas for the matching line are carried out. Finally, several L L L
C; C, C;

Fig. 1. Balanced stripline geometry.

applications that show the capability, flexibility, and fastness of

the developed synthesis method are presented.
Index Terms—Design formulas, matching line, stripline. H
C, C, C,
. INTRODUCTION T T T

N MONOLITHIC-MICROWAVE integrated-circuit
(MMIC) technology, microstrips and striplines are widelyFig. 2. Stripline capacitance model, is the parallel-plate capacitance and
used because of several of their properties: large bandwidth, s the fringing capacitance.
excellent miniaturization, small volume, small weight, etc. 5
Moreover, the very easy passive circuits realization and the very

good integration with chip devices make them very popular in
microwave printed-circuit technology. /\/

The stripline consists of an inner conductor embedded in a w(x) A
dielectric material that is sandwiched between two conducting X
planes. In the balanced form, the stripline has the inner con-
ductor in the middle between the two ground planes (Fig. 1).

Since the principle mode of operation for such a waveguide is \_/\
theTEM(%), it allows the field inside the stripline to be studied
in a very fast and easy way. In fact, the TEM mode has a null
cutoff frequency and, therefore, it can be studied as a static field. o

Striplines have been widely studied starting from the end 6 3 Stipline taper.

the 1940s and the beginning of the 1950s [1][3]. In these early

studies, the main tasks were the calculus of the charac:teristiﬁn ”_‘atCh'”g purpl)oses, a nge frequencyhranﬁ]el dm' th'tCh
impedance of the line and the derivation of a static capacitar{&‘ ections are very low (i.e., under a certain threshold) is often

model to completely represent the field in every transverse Sé%guwed. In order to achieve this goal, tapered lines can be

tion of the lossless balanced stripline. This model takes into aticcessfully used [5]. Thus, if it has to match each other two

count both the reactive effect of the capacitance between Hmform striplines with different characteristic impedances and
inner conductor and the two metallic shields and the fringing eﬁ-w'de'band matching is required, a stripline with a tapered

fect of the field at the boundary of the inner conductor. In Fig. 91N€r conductor (Fig. 3) can be used. Section by section the
th of the inner conductor varies and, thus, the characteristic

the capacitance model for the generic transverse section of i q £ the i | N h h b
stripline is depicted as shown in [4]. impedance o the line also varies in such a way t .at, at the

two ends, it has the same values of the two uniform lines to be
matched.
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large range of frequencies. These kind of materials can be o
tained via nonuniform metallic inclusions with different shapes &
and dimensions in a host dielectric. Otherwise, typical exam g
ples of such materials are those used for optical waveguides a -o—; .
fibers with a spatial variation of the refractive index or semicon- ]
ductor with a continuous doping profile. 304
However, the idea proposed in this paper is to merge the tap ]
method and the use of inhomogeneous substrates in orderto ¢ 2o-
sign very general matching lines with high performances an
with multiple control capabilities. The striplines used have ar 1o

inner conductor tapered along theaxis and the substrate with 1 : e
an e_\rbltrary continuous permittivity profile along the same di- ono om oo ors ok
rection. wib

The introduced component is such that its matching proper-
ties can be controlled in two different ways: by using the tap&i. 4. Characteristic impedance relative error made using (6) instead of the
of the inner conductor and/or by using the permittivity profile ofxact formula [1], [10].
the dielectric substrate. The aim of this paper is to find a model
that yields to simple, accurate, and practical design formulas forlt is well known [1], [10] that if the thickness of the inner

these striplines used in microwave matching purposes. conductor can be neglected, so tha < 1, in such a way
that it can be imposed, = 0, a closed analytical form for the
Il. THEORY characteristic impedance, based on conformal mapping, can be
. derived. This exact solution involves a ratio of two complete el-
A. Parameters of the Stripline liptic integrals of the first kind<” and it is very simple, practical,

Let us consider the stripline capacitance model depictedand accurate. However, if the widthy) of the inner conductor
Fig. 2. The parallel-plate capacitance per unit length (in the ab-greater tha®.1750, it will be demonstrated in the following
sence of fringing) is given by that an approximated formula can be easily carried out for the

characteristic impedance so that the relative error on the deter-

%0 % mination of the characteristic impedance is less than 5%.
Cp = Coery T T 2606r—t- (1) By assuming = 0in (1) and in (2), the total capacitance per
1- A unit length is approximated by
On the other hand, the fringing capacitancg per unit length has C, ~ dege, <E + 2 log 2) ) (5)
been exactly computed by conformal mapping [8, p. 104, eq. 35] 0
as follows: The characteristic impedance of the stripline in such a case is
given by
€0€p 2 1
Cr= (; 7 log [ 1+ —— %:307”71” ; (6)
S 1— - T P
b b b + ™ 08
where the subscript denotes that this is an approximated form.
1 ) 1 In Fig. 4, the relative error obtained using (6) instead of the
t 1| log £\ 2 -1 ©exact formula is depicted as a function of the inner conductor
1= <1 - 5) normalized width ¢ /b).

2 As can be seen, the relative error on the characteristic
impedance decreases as the inner conductor normalized width
Referring to the capacitance model depicted in Fig. 2, the totdf ¢aSes: Moreover, f[he approxm_1ated_ formula (6) Iead_s to
capacitance per unit length of the stripline is given by an error less than 5% if the normallzed inner conductor W|dt_h
(w/b) is greater than 0.175. This makes (6) commonly used in
C, = 2C, +4C}. analysis and synthesis practical problems regarding striplines.
In this paper, we use (6) and (4) for the characteristic
Two of the most important parameters of any transmission lifflepedance and the phase factor, respectively. These two for-
are its characteristic impedance) @nd phase factord). As- mulas are effective section by section alongihdirection and
suming the TEM-mode propagation, these two parameters @gscribe the propagation of th&EM(z) mode in an uniform

be written as follows: stripline.
If we want to study nonuniform striplines that have an inner

C (3) conductor tapered along thieaxis, it can be shown that (6) and
Vel (4) are still effective [9]. This result comes from the fact that
B = wr\/1o€o€r. (4) we can write them on each transverse section of the stripline.
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For such a transmission line, we have, section by section, the ) ) ) . .
h fact but a diff tch teristic i d Fig. 6. Magnitude of the input reflection coefficient as a function of frequency
same phase factog), but a different characteristic impe a'nce('in gigahertz) by using a cascade &f\/4 transformers. (The two uniform

In fact, if the dielectric material that fills the stripline is homo-striplines to be matched have = 75 andn; = 5012, respectively. The

geneous, (6) and (4) become free-space fundamental frequencyfis= 1 GHz.)
307 1
ne)=—=—F—5—— (7)
Ver w(z) + 2 log 2 0,20
b T
Ir_ |
/3 = W~/ o€t - (8) e Tchebyscheff

Moreover, if the inner conductor has an uniform width and Max. flat
the dielectric material is inhomogeneous with a continuous vari- ;|
ation of the relative permittivity along thizaxis, (6) and (4) are

also still effective section by section. In this case, we have eithe

a variation of the characteristic impedance and a variation of thr 0,05+
phase factor along the-direction.

Finally, if we use a nonuniform stripline filled by an inho-

A4 transformers

0,00 . S ‘ Y

mogeneous dielectric material, the characteristic impedance ar 0,0 05 1w 1s 20
phase factor can be written as follows: Frequency [GHz]
— 307 1 9 Fig. 7. Magnitude of the input reflection coefficient as a function of
n(z) = ) -

c,,(a:) w(a:) 2 frequency (in gigahertz) by using a cascadeMof= 5 \/4, maximally flat

) + ; log 2 and Chebyshev transformers, (The two uniform striplines to be matched
haven, = 75 andns = 50¢2, respectively. The free-space fundamental
/3(@ —w /liofofr(ﬂ?)- (10) frequency isfo = 1 GHz.)
] . the results are very poor. We have a good matching, in fact,
B. Matching Lines only for narrow frequency bands centered around the odd mul-

Let us consider now the use of a tapered stripline filled by diple of the fundamental frequency (i.e., the frequency for which
inhomogeneous material as a matching line. A typical matchitige transformer is designed). As can be seen from Fig. 6, the
purpose is depicted in Fig. 5. matching frequency band can be improved by using a cascade

It has to match two striplines with different characterof A\/4 transformers.
istic impedance #f; and 73, respectively). Let us suppose, Itis well known that a better bandwidth can be achieved by
as a general case, that these two lines have different inmemg maximally flat or Chebyshev transformers, as shown in
conductor widths and that they are embedded in differehig. 7.
dielectric materials (it is clear that the cases in whigh= ws However, these matching lines, based on a cascade of uniform
or ¢,; = €,3 are sub-cases). transformers, have several disadvantages. The abrupt transition

A # tapered stripline with its inner conductor embedded inr@gions between adjacent sections, in fact, exhibits reactive dis-
dielectric material whose relative permittivity varies along theontinuities, which introduce reflections and, thus, degrade the
Z-direction is employed to solve this kind of matching problemmatching performance at the higher microwave frequencies. On
The choice of this tapered inhomogeneous matching line dbe other hand, the length of the matching line increases with the
pends on the fact that a good matching can be performed fonamber of the used transformers and, finally, if wider matching
very large frequency range [5]. bandwidths are needed, it has to find a way to knock down the

This is not the only possible choice to make up a matchimpaks of the reflection-coefficient magnitude for the even mul-
line. For instance, a classicaf4 transformer can be used, butiples of the fundamental frequency.
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C. Reflection Coefficient tial line, linearly tapered line, hypergeometric line, hyperbolic

If we want to perform the matching by using a taperet®: tc.)- o _
stripline with the inner conductor embedded in an inhomo- !N [13] and [14], a generalization of the nonuniform trans-
geneous material, we have to compute the input reflectiGi{SSion line, whose solution can be expressed in a closed an-
coefficient for a nonuniform transmission line. It is well knowrflytical form, has been proposed. Via the variable substitution
that the reflection coefficient for this kind of lossless ling = (), whereu(z) is an arbitrary, derivable, and not null
satisfies the following nonlinear Riccati equation [11]: derivative function, (14) becomes

d*V (x) 1 d [ flz) ] dV(z)
2 N
W) o ipar(@) + L@ dloen(@) _ gy o T i @ [du/dx} du
dz 2 dz
In matching purposes, section by section, the reflection coef- —ZOYO% V({z)=0. (15)

ficient along the nonuniform line is very small so that it can be
imposed, i.e., I['(z)|? < 1. In[12], itis shown that via this as-  This equation is the second-order differential voltage equa-
sumption, the Riccati equation becomes an ordinary linear eqtian for ageneralizechonuniform transmission line.

tion and that, once itis solved, the input reflection coefficient for To clarify the concept of generalization, let us consider as

an L-long nonuniform transmission line is an example an exponential transmission line. Impedance and
admittance profiles are of the form
! dlogn(x) [ ’ /
Pinput = 5 g &P —2j B(z")de' | da. Z2(z) = Zyet® (16)
’ ’ (12) Y(2) = Yoo

I_n fch(_a general case, if the functional profl_les of the Charaﬁihereq is the taper factor of the line. Inserting these profiles
teristic impedance and phase factor are arbitrary, (12) does e

. L o 6 14), it becomes
yield a closed form because it involves two numerical integra- (14)

tions. dQV(x) — qu(x) — ZoYoV(z) = 0. a7

x

z. (18)

Therefore, even if (12) can be successfully used in a matching dr2 dr
line analysis purpose, it is not suitable for design purposes. . . S
this kindyof p?obl%ms, in fact, once the param(gerg o!‘othe tvx-/t)ﬂe solution of this equation is given by
striplines to be matched are given, the lengtaf the matching q e
line, the tapeww(x) of the inner conductor, and the relative per¥ (z) = c1 exp 5 +1/ (5) + ZoYy
mittivity profile e,.(x) have to be computed. In the general case,
(12) does not yield a closed analytical form, thus, we cannot 3
straightforwardly derive the design parameters among which, +co exp l% —4/ (g) + ZoYo
for instance, the length of the matching line.
In the Section 1I-D, the generalized nonuniform transmis- Let us now consider an arbitrary function(z). If the
sion-line theory is exposed via which a closed analytical forfg, e jance and admittance profiles of a nonuniform transmis-
for the reflection coefficient is carried out (Section II-E). sion line are of the following form:

D. Generalized Nonuniform Transmission-Line Theory 2(@) = 7 du(z) e
— 40
The coupled linear equations for a nonuniform transmission da (19)
line can be written as follows: Y(z) = Yo du(z) o—au()
dv(z
% = —Z(x)I(x) (15) becomes the same kind as (17) and its solution is
dl(xz) VeV (13) q q\2
de (2)V (=) V(z) = crexp >t (5) + ZoYo| u(z)

whereZ(z) = Zo f(x) andY (z) = Yyg(x) are the impedance 5
and admittance of the line, respectively. In the general ¢4se, +co exp q4_ (2) + ZoYo | w(z). (20)
andg(z) are arbitrary functionsZ, andY; are, instead, con- 2 2

stants that are imaginary for a lossless line.

The second-order differential voltage equation is

Equation (19) defines thgeneralizedexponential line (it is
clear, in fact, that ifu(x) = = (19) and (20) become (16) and
2V (z 1 dftz) dVix (18), respectively).
da?(Q ) - f(z) J;(x) di? ) — ZoYo f(x)g(z)V(z) = 0.
(14) E. Closed Form for the Reflection Coefficient

Although this equation does not have a closed analytical solu-Although the generalization of the nonuniform transmis-
tion in the general case, for several specific impedance and amn-line theory can be applied to all the lines for which a
mittance profiles, a closed form can be found out (i.e., exponesiosed-form voltage solution can be derived, here we only
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consider the generalized exponential one. Using this kind wiatched, i.eavq, w3, €,.1, ande,3. Another important input pa-
line, a very simple closed analytical form for the reflectiomameter is the lower frequency for which a good matching

coefficient can be carried out. has to be performed.
In the lossless case, the characteristic impedance and phagsestead, the output parameter of the matching line are the
factor for such a line are lengthZ of the nonuniform stripline, the dielectric material per-
mittivity profile ¢.(x), and the inner conductor taper profile
n(x) = noe? () w(x).
du(x) (21) Letus now consider that the dielectric material is not a disper-
B(z) = fo do sive material. The overall equations we can write are as follows:
WhereT]o = 4/ Zo/YE) andjﬁo =/ ZyYs. 67’('1' = 0) =4t
Let us now consider the matching problem depicted in Fig. 5. (e =1L) =63
Inserting (21) in (12), the following closed analytical form for ZE”” = OL)): 1:;1 (25)
=L)=ws

the input reflection coefficient is obtained:
27 fo/Boco|u(L) — w(0)| = nmw

Fin)u = A —360 [w(L)—u(O)]gj 3 L) — 0 22
put c Smc{/o[u( ) - )]} (22) wheren is a positive integer starting from one. Some expla-

nations about these equations have to be given. The first four

where are derived from the boundary conditions at the ends of the
7 sin(z) matching line and it has to be remarked that, by means of (24),

A =log <\/E> sinc(x) = they are not all independent. Thus, only three of them can be

n t used in the design of the matching line. Instead, the last equa-

andns andn, are the characteristic impedances of the two un'i'—or? IS obtameql by imposing that the sinc argument n (22) is
form lines to be matched. an integer multiple ofr at the f, frequency where the choice of

This analytical closed form for the reflection coefficienf* 9€P€nds on the required quality of the matching we have to

can be successfully used both in analysis and synthegﬁsrfornl‘l' J he expr:anart:on Olf this stat((ejment is in the following.
matching-line purposes. In [7], it is shown that analysis prol!)t—IS well known that the voltage standing-wave ratio (VSWR)

lems using (22) instead of (12) lead to a strongly decrea'§erelated to the magnitude of the reflection coefficient via

of computation time because the two numerical integrations 14T
disappear. Synthesis examples are also proposed in [7] and VSWR =

they show how design formulas for the matching line can be 1-|0|
directly derived.

thus, onceVSWR™?* is given, the maximum allowed magni-
F. Synthesis of the Matching Line tude for the reflection coefficient is

Referring to the Fig. 5 and to the formula (22), we have to find max | VSWR™ — 1
the unknown function(z) and the relationship between the L = VSWR™ +1°
relative permittivity profile and the taper of the inner conductor
such that the closed form for the reflection coefficient can behis value has to be compared with the magnitudeé'@f..
successfully used. So, by comparing the second of (21) wihd, starting fronyo, L'inpu: has to be less than it. Sintg, ;.
(10), the arbitrary functiom(z) can be expressed in term of theexhibits asinc behavior,|I'|™** has to be compared with the

(26)

relative permittivity profile of the dielectric material amplitude of thesinc sidelobes. Therefore, the right-hand-side
value ofn can be derived as the smallest positive integer that
() :/ mdx. (23) satisfies the following inequality:
VSWR™ _ 1 , T
On the other hand, by comparing the first of (21) with (9), VEWRT™ 11 ASIHC{(% + 1)5} ‘ (27)

the relationship between the permittivity profdg(x) and con-

ductor tapemu(z) can be derived as follows: Thus, the integet is associated with theth sidelobe of theinc

and, if |I'|™** is greater than the amplitude of this sidelobe, it

exp <q/ de) is also greater than all the following ones. In addition, since we
M _ 2 log2 + C (24) aresure that (27) also holds at thth zero position, in order
b u er(x) to extend the good matching frequency range, we can calculate
the proper length of the matching line from the fifth equation of
whereC' is an integration constant. (25).

In design problems of the kind shown in Fig. 5, the typical Once the proper value afhas been determined, the designer
input parameters (i.e., known parameters) are the geometricaih arbitrarily choose either the kind of function describing
and electromagnetic characteristics of the two striplines to tee taper of the inner conductor or the permittivity profile
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w(x) = F(x,H,x,4)

Input £(x) = G(x,K,x,. o) Output
Parameters Parameters
Designer’s choices
(freedom degrees)

Normalized width (w/b) of the inner conductor

T T v T T T
0,006 0000 0,005 0,010 0015 0020 0025 0,030
Distance along x axis [m]

Fig. 8. Design method. ) ) ) ) ) )
Fig. 9. Normalized inner conductor width as a functionof The input

parameters arev; /b = 0.4, ws/b = 1.2, €4 = 233, €53 = 6.80,
of the dielectric material. The associate permittivity proﬁlécO = 3 GHz, andVSWR™™ = 1.5.
or taper profile is then given by (24). In order to satisfy the
two boundary conditions at the ends of the matching line,
both w(z) and ¢.(z) are chosen with two freedom degrees

(an amplitude and a shift coefficient)(z) = F(x, H, Zu0) 0005 00 [ oS L oq0 L oQs o0 | ogm | 0%

ande.(z) = G(z, K, z.0). Thus, if the designer arbitrarily 7 |,
choosesu(z) [and derives,.(z) via (24)], he has to determine . : !

the length of the matching ling, H, x.,0, and the integration 6 -6
constantC' in (24), but, if he arbitrarily chooses.(x) [and & f : -

derivesw(x) via (24)], he has to determing, K, z.q, andC. ’é 5+ -5
The design method developed in this section for the matchin g I

line is discussed further in Fig. 8. 2 49 4
g | !

€ o _3

I1l. NUMERICAL RESULTS

In this section, we show several applications of the desig! ; ;
method presented above. First of all, let us consider a matchir  -000s 0000 0005 0010 0015 0020 0025 0,030
problem between two uniform, lossless, matched, and balanc¢ Distance along x axis [m]
striplines (referred to as striplines 1 and 3) with different nor-
malized widths of the inner conductor and with different dieled=9. 10. - Relative permittivity of the matching line as a function-oThe input
tric materials. Stripline 1 has an inner conductor, whose ntﬁﬁéﬂzefggxasr%{ﬁbi 04 wafb =12, en = 283, &0 = 680, fo =
malized width isw, /b = 0.4, and a dielectric material with rel-
ative permittivitye,.; = 2.33 (RT/Duroid). The other stripline
(stripline 3) is instead characterized by the following parame-
ters:ws/b = 1.2 ande,3 = 6.80 (beryllium oxide). The max-  Instead, in Fig. 10, the spatial variation of the dielectric rela-
imum allowed VSWR id..5 and the matching has to be effectivdive permittivity along thei-axis is shown.
starting from the frequencyp = 3 GHz. Moreover, the numerical result obtained for the length of the

Now that the six design specifications (i.e., input parametersiatching line show that the use of tapered striplines with in-
are given, the designer can arbitrarily choose either the lawliimogeneous substrates instead of a cascade of uniform trans-
relative permittivity spatial variation along theaxis, provided formers (i.e.\/4, maximally flat or Chebyshev) allows the con-
that the taper profile is given through (24), or the taper pretruction of a shorter matching line. This yields several impor-
file, provided that the variation of relative permittivity is agairtant advantages in order to make these components very com-
obtained via (24). Let us choose, for instance, a squared spaect.
tial variation for the relative permittivity along the-axis, i.e., Finally, in Fig. 11, the behavior of the VSWR at the input sec-
e-(z) = H(x + z0)?. The inequality (27) is satisfied far = 1  tion of the matching line is reported as a function of frequency.
and the solution of the system (25) gives the following output It is worth noticing that the design specification about the
parameters’, = 2.418 cm, H ~ 2000, zo = 0.03413, and VSWR™®* can be well satisfied by means of the high-pass
C = 0.0153. frequency behavior of such a matching line because we con-

The output parameters computed via the application of teler a non-frequency-dispersive dielectric material. In a fre-
novel method developed in the previous section allow the dgdency-dispersive case, in fact, we should have a frequency be-
signer to construct the proper matching line. In Fig. 9, the overdlavior different from gsinc| profile for the magnitude of the
normalized width of the matching line inner conductor as a funceflection coefficient and, thus, a different plot for the VSWR
tion of z is depicted. at the input section of the matching line. However, it is clear
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Fig. 11. VSWR at the input section of the matching line as a function of

frequency. The input parameters are/b = 0.4, ws/b = 1.2, ¢,, = 2.33, Fig.12. Relative permittivity of the matching line as a functiorroThe input

€3 = 6.80, fo = 3 GHz, andVSWR™** = 1.5, parameters areo; /b = 0.5, w3 /b= 0.5,e,1 = 1,653 = 10.2, fo = 5 GHz,
andVSWRm»*x = 1.15.

that the input reflection coefficient closed form (22) is also ef-  2%°

fective if we have to consider the frequency dispersion of the ] W

dielectric material and, thus, also the relative permittivity as ¢ ]

function of frequency. In fact, if,. = ¢.(z, w), (23) becomes 2,001

w(z, w) = [ /e (x, w)dzand,in (22)u(L) andu(0) become s ]

u(L, w) andu(0, w). No other changes are needed. This mean o \

that the argument of th&nc in (22) is no longer a linear func- 1,50

tion of the frequency and, thus, the last equation of the systel T \ /

(25) is no longer effective. The needed changes to this equatic ~ "*°] ;

will be the subject of future study. 1,00 vV \/
Referring to Fig. 11, it can be seen that, although a perfec 1

matching (i.e.,VSWR = 1) is achieved for only specific fre- 0TS T A S A b

quency values, starting frotfs, the VSWR™** specification is Frequency [GHz]

fully satisfied. The theory of nonuniform transmission lines en-

sures that a complete matching for all the frequency band dag 13. VSWR at the input section of the matching line as a function of

be performed only if the matching line has an infinite lengtt{feauency. The input parameters are;/b = 0.5, ws/b = 0.5, € = 1,

Thus, the closeVSWR™ is to one, the bigger the length of the™ ™ — -2 fo = 5 GHz andVSWR™ = 1.15.

matching line. For instance, referring to the previous matching

case, if theVSWR™** drops down from 1.5 to 1.1, the length . .

of the line arises from 2.418 to 9.671 cm. (24) isC = 0.9413, and the two permittivity parameters are
In the following, it is shown that the synthesis method forthg = 0_'0600 andzp = _0'0243' N i : .

matching line developed in the previous section is also effectiveIn Fig. 12, the relative permittivity profile of the dielectric

in physical situations less general than that shown in the fit@fite”al filling the matching line is shown as a function.of

numerical example. Let us consider here two uniform lossle sln Fig. 13, the plot of the VSWR at the input section of

matched balanced striplines (striplines 1 and 3, respectivel§)¢ Matching line is reported. As can be seen, also in this
se, the given matching specificatiofSWR < 1.15) is

which have the same normalized width of the inner conduct I ifiod
wi/b = ws/b = 0.5. Stripline 1 is filled with air ¢,, = 1), Uy satshed. _
stripline 3 with aluminad.s = 10.2), the maximum for the The last numerical example that is proposed regards another

VSWR isVSWR™ — 1.15 and the lower matching frequencySpeCial case of the general theory developed in the previous sec-
is fo = 5 GHz. The most straightforward way to design Lion. Let us consider two uniform lossless matched, balanced

matching line in this case is to choose a stripline with an uritriplines, i.e., striplines 1 and 3. They have the same substrate
form inner conductor«¢/b = 0.5) and with a dielectric ma- (RT/Duroid,e,.; = ¢,3 = 2.33), but different normalized widths
terial whose relative permittivity continuously varies from 1 t®f the inner conductor«; /b = 0.5 andws/b = 2.2). The
10.2. Assuming a constant normalized widib for the inner maximum VSWR allowed on the input section of the matching
conductor of the matching line, (24) can be solved for the pdine is VSWR™* = 1.2 and the lower matching frequency is
mittivity profile of the dielectric material and a parabolic lawfo = 7 GHz. Inthis case, we have to design a matching line with
of the kinde,.(x) = H(z + z()? can be discovered. In thisthe same dielectric material of the other twp & 2.33) and
case (27), inequality is satisfied far = 3; the length of the with an inner conductor whose normalized width varies from
matching line isL = 5.321 cm, the integration constant inw/b = 0.5 to w/b = 2.2. Assuming a constant value fey.

2,25

VSWR™=1.15

VSWR
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Fig. 14. Normalized inner conductor width as a functionaofThe input
parameters arew; /b = 0.5, ws/b = 2.2, €., = 2.33,€,3 = 2.33,
fo = 7 GHz, andVSWR™>* = 1.2.
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electric material whose relative permittivity varies continuously
along the energy propagation direction.

Using the nonuniform transmission-line theory, a closed an-
alytical form for the input reflection coefficient of the matching
line has been carried out. On the base of this formula, a com-
plete, accurate, and very fast design method for this kind of
matching line has been developed.

Finally, several numerical results have been presented to
show how the novel design method can be successfully used in
practical situations. First, the very general matching problem in
which it has to match two other striplines with different inner
conductor widths and different dielectric substrates has been
considered and solved via the novel method developed here.
The particular matching problems in which the two striplines
to be matched then have different inner conductor widths, but
the same dielectric substrate, and vice versa, have been solved
as sub-cases.

The main attractive of the novel method developed in this
paper is in the capability of deriving in a straightforward manner
the length of the matching line, relative permittivity profile, and
taper of the inner conductor. The main physical result of the
new kind of matching line proposed instead is the capability
of obtaining a good matching on a wide frequency range by
means of two control keys: the conductor taper and dielectric

3,5
3,0
2,5
s
2,04 riax
g /VSWR =1.2
1,54 /
1,04 (4 N A [1]
. ; . .
0 5 10 15 20 2]
Frequency [GHZ]
Fig. 15. VSWR at the input section of the matching line as a function of 3l
frequency. The input parameters arg:/b = 0.5, w5 /b = 2.2, €, = 2.33,
€5 = 2.33, fo = 7 GHz, andVSWR™** = 1.2. 4]
(5]

in (24), the taper of the inner conductor has an exponential Iaw[6]
—2/mlog2 4+ Ke*/*. Inequality (27) gives: 2 and, via
the solution of the system (25), the following parameters are

obtained:L = 2.806 cm, K = 09413, z, = 0.0272, and  ["]
C = 1.4300. In Fig. 14, the overall normalized width of the
central conductor as a function of the distance along:th&is (8l

is reported. [9]
InFig. 15, the VSWR on the input section of the matching line
as a function of frequency is depicted. As can be seen, starting
from fy = 7 GHz, the matching fully satisfies the design spec-[ ol
ifications.
[11]
[12]

IV. CONCLUSIONS [13]

In this paper, a new type of wide-band matching line has14
been proposed. This matching line consists of a stripline witﬁ ]
a tapered inner conductor embedded in an inhomogeneous di-

inhomogeneity.
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